Full Text

Turn on search term navigation

© 2018 Fisher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objectives

Muscles dominant in type I muscle fibres, such as the lumbar extensors, are often trained using lighter loads and higher repetition ranges. However, literature suggests that similar strength adaptations can be attained by the use of both heavier- (HL) and lighter-load (LL) resistance training across a number of appendicular muscle groups. Furthermore, LL resistance exercise to momentary failure might result in greater discomfort.

Design

The aims of the present study were to compare strength adaptations, as well as perceptual responses of effort (RPE-E) and discomfort (RPE-D), to isolated lumbar extension (ILEX) exercise using HL (80% of maximum voluntary contraction; MVC) and LL (50% MVC) in healthy males and females.

Methods

Twenty-six participants (n = 14 males, n = 12 females) were divided in to sex counter-balanced HL (23 ± 5 years; 172.3 ± 9.8 cm; 71.0 ± 13.1 kg) and LL (22 ± 2 years; 175.3 ± 6.3 cm; 72.8 ± 9.5 kg) resistance training groups. All participants performed a single set of dynamic ILEX exercise 1 day/week for 6 weeks using either 80% (HL) or 50% (LL) of their MVC to momentary failure.

Results

Analyses revealed significant pre- to post-intervention increases in isometric strength for both HL and LL, with no significant between-group differences (p > 0.05). Changes in strength index (area under torque curves) were 2,891 Nm degrees 95% CIs [1,612–4,169] and 2,865 Nm degrees 95% CIs [1,587–4,144] for HL and LL respectively. Changes in MVC were 51.7 Nm 95% CIs [24.4–79.1] and 46.0 Nm 95% CIs [18.6–73.3] for HL and LL respectively. Mean repetitions per set, total training time and discomfort were all significantly higher for LL compared to HL (26 ± 8 vs. 8 ± 3 repetitions, 158.5 ± 47 vs. 50.5 ± 15 s, and 7.8 ± 1.8 vs. 4.8 ± 2.5, respectively; all p < 0.005).

Conclusions

The present study supports that that low-volume, low-frequency ILEX resistance exercise can produce similar strength increases in the lumbar extensors using either HL or LL. As such personal trainers, trainees and strength coaches can consider other factors which might impact acute performance (e.g. effort and discomfort during the exercise). This data might prove beneficial in helping asymptomatic persons reduce the risk of low-back pain, and further research, might consider the use of HL exercise for chronic low-back pain symptomatic persons.

Details

Title
Heavier- and lighter-load isolated lumbar extension resistance training produce similar strength increases, but different perceptual responses, in healthy males and females
Author
Fisher, James P; Stuart, Charlotte; Steele, James; Gentil, Paulo; Giessing, Jürgen
Publication year
2018
Publication date
Nov 22, 2018
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2136840879
Copyright
© 2018 Fisher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.