1. Introduction
Pulse wave is a pressure wave propagating through the arterial system, generated by the periodic contraction and relaxation of the heart, and its characteristics are influenced by the compliance of the vascular system, blood viscosity, and the functions of major organs. By diagnosing the pulse, trained practitioners can gather elaborate physiological and pathological information on the cardiovascular system, organ functions, patients’ constitution, emotional conditions, behavioral patterns, and previous illness, as well as body’s homeostatic balance [1–5].
Pulse diagnosis has been considered a core component of diagnostics in Oriental medicine for thousands of years. In contemporary Oriental medicine, pulse diagnosis is made dominantly at three adjacent positions along the radial artery in both wrists. A palpation position called Gwan is located on the radial artery closest to the styloid process. Chon is about 10 mm distal from Gwan and Cheok about 10 to 15 mm proximal from Gwan [6]. To diagnose the pulse, an Oriental medical doctor (OMD) places the index, middle, and ring fingers, respectively, at Chon, Gwan, and Cheok and applies varying pressure simultaneously or sequentially to determine the pulse qualities.
A recent survey indicates that about 22% of OMDs rely on pulse diagnosis as the primary diagnostic method, which is next to the inquiry (38%) and observation (27%). About 71% of the survey participants asserted that pulse diagnosis was in their diagnoses [7]. Despite its importance and frequent use in clinics, pulse diagnosis has been criticized for the lack of scientific evidence and for the manual palpation and subjective interpretation of pulse qualities. To provide sound scientific evidence and to overcome the experiential boundary of pulse diagnosis, it is essential to develop objective techniques with standardized protocols to obtain pulse signals, and interpret them into pulse qualities defined in terms of a few measureable physical parameters [1, 8, 9].
With advances in fabrication technology for pulse-taking devices [10–12], progress has been made on the quantification and objectification of pulse diagnosis. The physiological characteristics of the pulse at the three aforementioned palpation positions have been shown to differ, which implies that the pulse at each position conveys different clinical information [10]. According to the theory of correspondence between palpation positions and organs, the pulse at the left Gwan conveys the heart functioning [1]. Based on this theory, Huang et al. studied the characteristics of the pulse at the left Gwan and reported that the spectral energy of the pulse in the fourth to sixth harmonics was overly damped in palpitation patients compared to normal subjects [11]. On the other hand, Liu et al. found that, in the pulse measured at the left Chon, Zen meditation induces more elastic pulse waveforms which might indicate improved performance of the cardiovascular system [12]. A report asserted that heat stress reduces the radial augmentation index (AIr) and cold stress increases AIr [13]. Recently, several publications report on the technical improvement of signal processing for the pulse waveform analysis [14–18].
A pulse analyzer may replace the OMDs’ pulse diagnosis by fingers if it is capable of analyzing the characteristics of the pulse in terms of fundamental physical parameters such as depth, width, length, force, rhythm, contour, speed, and rate [1, 8]. For this purpose, it requires acquisition of the pulse waveform at different hold-down pressures (equivalently, applied pressures), containing two-dimensional spatial distribution of the pulse amplitude along and across the axis of the radial artery. So far, most works on the radial pulse are limited to pattern classification and feature extractions of the pulse waveform obtained at the optimal applied pressure, aiming to distinguish abnormal pulses from normal pulses. As such, to develop desirable pulse analyzers, more extensive studies are needed.
There are proposals on how to interpret classical pulse qualities in terms of machine appropriate physical parameters [1, 9]. For instance, some researchers attempted to classify a few pulse qualities that can be identified by pattern recognition [19, 20]. Particularly, Zhang et al. developed two effective pattern classification algorithms to distinguish five different pulse patterns of moderate, smooth, taut, hollow, and unsmooth pulses.
More recently, a novel diagnostic algorithm to distinguish a deep-lying pulse (sunken pulse) from a superficial pulse (floating pulse) was proposed and validated clinically by the authors [21, 22]. For this purpose, we introduced a normalized coefficient that changes monotonically from 0 to 1; as the pulse amplitude becomes larger at heavy-applied pressures compared to light-applied pressures, the coefficient lies closer to 1 [21]. The floating pulse and sunken pulse are the two pulse qualities representing the pulse depth and they belong to the four principal pulses together with the rapid pulse and slow pulse. Therefore, development of an effective algorithm which classifies a pulse according to its depth is a major achievement.
Another principal pulse parameter is the pulse force or equivalently the pulse power. In this work, we study the pulse classification method according to its force or power. Strictly speaking, no pulse quality is defined only in terms of the force of the pulse [1]. However, the pulse force is the most crucial parameter that determines excess/deficient syndromes and is therefore of great clinical importance. Most pulse qualities that are too weak or excessively strong in its pulsation strength are indicative of the deficiency syndrome or the excess syndrome, respectively. In this study, we consider the deficient/excess pulse to be the representative of forceless/forceful pulse qualities [23]. To develop an objective and reliable classification model, firstly, we delineate samples with deficient and excess pulse qualities (DEPs) based on OMDs pulse diagnoses. By using statistical methods, such as factor analysis and Fisher’s discriminant analysis, we examine some candidate variables that contribute to the OMDs’ conclusions of the DEPs. Finally, we propose a simple but efficient classification model which best explains OMDs’ diagnostic results.
2. Quantification of the Deficient and Excess Pulse Qualities
Pulse force is a complex parameter determined by the interplay between several variables such as the amplitude of cardiac contraction, volume of blood flow, and the tensile compliance of the arterial wall. A forceful pulse is defined as having large pulse amplitude over a range of the hold-down pressures, while a forceless pulse is defined as one with small pulse amplitude (Figure 1). Forceful pulse qualities include the excess (Shi), long (Chang), flooding (Hong), tight (Jin), and wiry (Xian) pulses, and forceless qualities include the deficient (Xu), weak (Ruo), faint (Wei), scattered (San), and soft (Ru) pulses [1]. Excess pulse (Shi Mai) and deficient pulse (Xu Mai) are the representatives of the forceful pulse qualities and forceless pulse qualities, respectively.
[figure omitted; refer to PDF]The excess pulse is felt strong at all depths from superficial to deep level, felt wide, and it is felt forceful at more than one palpation positions and the pulse is stretched beyond Cheok and/or beyond Chon positions (Figure 1). By combining with other pulse parameters, it can be distinguished from similar pulse qualities. For instance, the flooding pulse has additional properties such as floating and wide, and the wiry pulse to be less forceful and narrower than the excess and flooding pulses. The excess pulse occurs when excess perverse heat is accumulated in the three heaters in the body. Clinically, probable symptoms include insanity, mania, qi pain, yang toxins, vomiting, and other similar symptoms or it may indicate simple accumulation of perverse yang. Depending on the palpation positions, it is likely to indicate food accumulation (Gwan), constipation (Cheok) due to bound heat in the stomach (Gwan) and the intestines (Cheok), and headache, fever, sore throat, stiffness at the root of tongue, or stiffness in the chest and diaphragm (Chon) [2].
On the other hand, the deficient pulse lacks pulsation intensity. It is felt either weak through the entire range of pressure, or it is easily perceived with light pressure and ceases to be felt with heavy pressure due to arterial occlusion under heavy hold-down pressure (Figure 1). It can be distinguished from other forceless pulse qualities if other pulse parameters are additionally considered. For instance, the weak pulse is felt at a deeper level. The deficient pulse usually indicates deficiency in both qi and blood. Likely clinical symptoms include lethargy, shortness of breath, spontaneous sweating, pale complexion, low voice, dizziness, and pale tongue [2].
3. Subjects and Methods
3.1. Study Subjects
The study was approved by the ethics committees of the Korea Institute of Oriental Medicine, and informed written consent for the study was obtained from all subjects prior to study entry (I0903-01-02). Out of hundreds of healthy volunteers in their 20s with no vascular deformity on the radial artery, one hundred subjects were chosen by pairs of OMDs as appropriate candidates for diagnosing the pulse either with deficient or excess pulse qualities. The basic physiological data of the subjects are summarized as number or as mean ± SD in Table 1.
Table 1
Basic physiological data of the subjects.
Characteristic (unit) | Number or mean ± SD |
---|---|
Number ( |
100 (male = 50, female = 50) |
Age (yr) | 23.8 ± 2.4 |
Height (cm) | 168.0 ± 8.1 |
Weight (kg) | 63.8 ± 12.3 |
BMI (kg /m2) | 22.4 ± 3.1 |
Systolic/diastolic blood pressure (mmHg) | 119.2/68.5 ± 17.4/13.0 |
3.2. Study Design
The study design is shown in Figure 2. On each day of study, according to a given schedule, different pairs of OMDs from an OMD pool with eleven practitioners with more than five years of clinical experience were assigned to make pulse diagnosis. The paired OMDs were asked to independently examine each subject. To avoid confusion when characteristic pulse feelings were different between the left pulse and the right pulse, only the left wrist of each subject was used for pulse diagnosis. Of the 100 subjects chosen by the paired OMDs as appropriate candidates for pulse diagnosis for the DEPs, diagnoses on 70 subjects were concordant between the OMD pairs. Using a pulse-taking device, the pulse waveforms were obtained at the three palpation positions of Chon, Gwan, and Cheok in the left arms. We analyzed the pulse waveforms in the 70 subjects diagnosed either with the deficient pulse or with the excess pulse and attempted to develop a classification model for the DEPs which best explains OMDs’ diagnoses.
[figure omitted; refer to PDF]3.3. Pulse Waveform Acquisition
Pulse waveform was obtained by 3D MAC (Daeyomedi Co., Korea) which was commercially available and approved by the Korea Food and Drug Administration (KFDA). The 3D MAC operates with the applanation tonometry method to apply pressure and acquire pulse waveforms at the traditional palpation positions of Chon, Gwan, and Cheok (Figure 3). The device uses a motor-actuated pressure sensor, which contains 5 sensing elements arrayed crosswise within
[figures omitted; refer to PDF]
3.4. Signal Processing
Figure 4 illustrates data processing towards the pulse classification algorithm. Raw data (top panel) contained noise due to breathing, uncontrolled movement of subject’s arm, and so forth. Therefore, it required preprocessing to remove noise and to align baseline followed by period segmentation and averaging (second panel). We used a nearest neighbor interpolation technique to remove abrupt signal variation, and the 5th order polynomial approximation and subsequent spline interpolation to remove baseline wander. Finally, as outlined in the bottom panel in Figure 4, for each applied pressure step
[figures omitted; refer to PDF]
3.5. Pulse Amplitudes
In previous subsections, we discussed discrete pressure steps and pulse amplitudes (
[figures omitted; refer to PDF]
There are some pulse quantities derived from the pulse amplitudes that are potentially relevant in determining the DEPs. The first such quantity is the pulse pressure (PP). The PP, which is known to be an important indicator in predicting coronary heart disease particularly in the middle-aged and the elderly [24], is defined as the difference between systolic blood pressure and diastolic blood pressure in a cardiac cycle. The PP is equivalent to the maximum amplitude among the pulse amplitudes at various applied pressure steps, that is,
3.6. Statistical Method
Statistical analyses were performed by using SPSS version 14.0 (SPSS Inc., USA) and MATLAB version 7. x (Mathworks Inc., USA). Student’s
4. Results and Discussion
4.1. Diagnoses by Paired OMDs
One hundred subjects were selected by paired OMDs to be included in this study. Among them, the diagnoses on 70 subjects (70%) were concordant between paired OMDs, while the diagnoses of the remaining 30 subjects (30%) were divergent. Among the concordant cases, 26 subjects (37%) were diagnosed with deficient pulses and 44 subjects (63%) with excess pulses.
Table 2 shows that the accuracy (alternatively, concordant diagnoses) between OMD1 and OMD2 was 70% (70 agreements/100 simultaneous diagnoses), and the Matthews correlation coefficient (MCC) was 0.38. The MCC is regarded as one of the best measures of the quality of binary classifications, particularly when the two classes are of very different sizes [26, 27]. An accuracy of about 70% and MCC of about 0.4 are indicative of moderate concordance between OMDs’ diagnoses, noting that the diagnoses of Table 2 were not made by any fixed pairs of OMDs, but by cyclically paired OMDs among a pool of 11 OMDs on each day of study.
Table 2
Concordance of the pulse diagnoses between paired OMDs.
OMD1 | ||||
Deficient | Excess | Total | ||
|
||||
OMD2 | Deficient | 26 | 17 | 43 |
Excess | 13 | 44 | 57 | |
Total | 39 | 61 | 100 |
4.2. Characteristics of the Deficient Pulse Group and Excess Pulse Group
In total, 70 subjects were concordantly diagnosed with deficient or excess pulses by paired OMDs. Figure 6 summarizes the means and standard deviations (SD) of some relevant physiological quantities for each pulse group, stratified by gender. In addition, a Student’s
[figures omitted; refer to PDF]
Among the five statistically significant quantities,
The pulse pressure is known to be different throughout the large artery tree, while the mean arterial pressure remains constant and the diastolic pressure does not change substantially throughout the large artery tree [25]. In addition, the pulse pressures and other pulse parameters at the right and left arms usually show distinctive characters [29]. Therefore, it is reasonable to have discrepancy in the significance level between the pulse pressures at the left radial artery (
Since OMDs palpated the radial artery to diagnose the DEPs, among physiological quantities found at various locations along the large artery tree, a properly defined quantity on the radial artery is expected to show the best correlation with OMDs’ diagnostic result. Therefore, it is intuitively correct that the pulse pressure measured at the radial artery (
4.3. Factor Analysis
As described previously, we observed that the average pulse pressure
Table 3
Factor analysis of the 15 pulse amplitudes.
Factor | Variable | Factor loading | Eigenvalue | % of variance |
---|---|---|---|---|
f 1 | H 33 | 0.812 | 4.987 | 33.245 |
H 34 | 0.928 | |||
H 35 | 0.826 | |||
|
||||
f 2 | H 21 | 0.770 | 3.190 | 21.267 |
H 22 | 0.686 | |||
H 31 | 0.766 | |||
H 32 | 0.789 | |||
|
||||
f 3 | H 13 | 0.741 | 1.430 | 9.533 |
H 14 | 0.887 | |||
H 15 | 0.713 | |||
|
||||
f 4 | H 23 | 0.575 | 1.252 | 8.347 |
H 24 | 0.900 | |||
H 25 | 0.913 | |||
|
||||
f 5 | H 11 | 0.818 | 1.214 | 8.091 |
H 12 | 0.906 |
As in Table 3, we determined the 5 most relevant factors which accounts for about 80% of the variance, in which all 15 pulse amplitudes contribute once and only once with likely weight; factor loadings are in equal orders of magnitude, ranging between 0.58 and 0.93 [31]. The two most contributing factors account for about 54% of the variance, in which the pulse amplitudes at all applied pressures at Cheok (
4.4. Fisher’s Discriminant Analysis with the Five Factors Obtained from Factor Analysis
With the five factors listed in Table 3, we continued to perform Fisher’s discriminant analysis to determine a discriminant function for the DEPs with reference to the OMDs’ diagnoses [30]. The value of Box’s
Table 4
The standardized canonical discriminant function coefficients for the five factors in Table 3.
f 1 | f 2 | f 3 | f 4 | f 5 | |
---|---|---|---|---|---|
Coefficient | 0.575 | 0.219 | 0.091 | 0.538 | 0.489 |
Table 5
Pulse classification with the 5 factors obtained from factor analysis into the DEPs.
Classification by discriminant function | Total ( |
|||
Deficient pulse | Excess pulse | |||
|
||||
OMD diagnosis | Deficient Excess | 20 (76.9%) | 6 (23.1%) | 26 |
13 (29.5%) | 31 (70.5%) | 44 | ||
Cross-validation | Deficient Excess | 17 (65.4%) | 9 (34.6%) | 26 |
18 (40.9%) | 26 (59.1%) | 44 |
By combining the results in Tables 3 and 4, we notice that all the pulse amplitudes at light- and heavy-applied pressures at Chon, Gwan, and Cheok contribute on equal orders of magnitude to the classification of the DEPs. More rigorously speaking, the most contributing factors of
We applied the coefficients in Table 4 to Fisher’s discriminant function and obtained the classification result in Table 5. The accuracy of the classification for the entire data set is 72.9% with the Matthews correlation coefficient of 0.46. We repeated the leave-one-out cross-validation test and obtained the accuracy of 61.4% (
4.5. Fisher’s Discriminant Analysis with the Representative Pulse Quantities at Each Palpation Position
By factor analysis, we found that all the pulse amplitudes at various levels of applied pressures at the three palpation positions contributed with similar weight in the determination of the DEPs. OMDs rely mostly on the pulse force to determine the DEPs. A pulse may be considered forceful if either its maximum amplitude is large or the average amplitude over various applied pressures is large. The former is the pulse pressure and the latter is the mean pulse amplitude. In search of a simple form for the discriminant function with improved accuracy compared to the result using factor analysis, the two most relevant quantities are thought to be the pulse pressure
In the canonical correlation analysis, the coefficients of the standardized canonical discriminant function for
Table 6
Pulse classification result by
Classification by discriminant function | Total (N) | |||
Deficient pulse | Excess pulse | |||
|
||||
OMD diagnosis | Deficient Excess | 21 (80.8%) | 5 (19.2%) | 26 |
10 (22.7%) | 34 (77.3%) | 44 | ||
Cross-validation | Deficient Excess | 20 (76.9%) | 6 (23.1%) | 26 |
11 (25.0%) | 33 (75.0%) | 44 |
By repeating the canonical correlation analysis using
4.6. Diagnostic Model with the Representative Pulse Quantities over All the Palpation Positions
Let us further reduce the number of pulse variables by taking the maximum or the average of pulse quantities
Following this procedure, we obtain four pulse quantities, such as
Table 7
Fisher's discriminant analysis with
|
|
|
|
Sum | ||||||
Accuracy | MCC | Accuracy | MCC | Accuracy | MCC | Accuracy | MCC | Accuracy | MCC | |
|
||||||||||
Entire data | 74.3% | 0.47 | 64.3% | 0.30 | 74.3% | 0.48 | 70.0% | 0.39 | 65.7% | 0.32 |
Cross-validation | 72.9% | 0.45 | 64.3% | 0.30 | 74.3% | 0.48 | 70.0% | 0.39 | 62.9% | 0.26 |
We can improve the accuracy beyond the limit of the linear discriminant analysis by a mixed-variable classification model, where two competing variables participate sequentially in the decision process in complementary manner. To build an appropriate mixed-variable classification model, we review a simplest linear discriminant function with one participating variable; with
(1)
where parametersAn improved accuracy is possible by substituting the intermediate regime of discordance (the regime between
[figures omitted; refer to PDF]
5. Conclusions
For the objectification and standardization of pulse diagnosis, reliable classification methods for the principal pulse qualities are urged to be developed. The deficient and excess pulse qualities (DEPs) are clinically important as they are the indicators representing the deficiency syndrome and the excess syndrome, respectively. In this work, we proposed a classification method for the DEPs. For this purpose, we conducted a clinical test and selected 70 subjects in their 20s either with the deficient pulse (26 samples) or with the excess pulse (44 samples), by concordant diagnoses between paired OMDs. By a Student’s
Next, we showed that either of the pulse pressure or the average pulse amplitude yielded as good accuracy as the original pulse amplitudes. It reflects that the diagnoses of the DEPs by OMDs rely mostly on the pulse force, as either of the two quantities is appropriate in representing the pulse force and good at describing the collective behavior of the original pulse amplitudes. Finally, we proposed a mixed-variable classification model, in which two complementary variables, for example, either two of the maximum or average of the pulse pressures, or the maximum or average of the mean pulse amplitudes, acted over the three palpation positions, were used sequentially to increase the classification accuracy in a reasonable degree. This study will contribute to the objectification and standardization of pulse diagnosis.
Acknowledgments
This work was supported by a grant from the Korea Institute of Oriental Medicine (KIOM) funded by the Korea government (K11070) and was partially supported by the Korea Ministry of Knowledge Economy (10028438). The authors thank Mr. Boncho Ku for his contribution to the statistical analysis and Dr. Young-Koo Lee for comments on the paper. The authors declare no commercial associations that may lead to conflicts of interests in connection with this work.
[1] Z. F. Fei, Contemporary Sphygmology in Traditional Chinese Medicine, 2003.
[2] S. Walsh, E. King, Pulse Diagnosis: A Clinical Guide, 2008.
[3] L. Hammer, Chinese Pulse Diagnosis: A Contemporary Approach, 2001.
[4] H. K. Huynh, G. M. Seifert, Pulse Diagnosis by Li Shi Zhen, 1985.
[5] B. Flaws, The Secret of Chinese Pulse Diagnosis, 2006.
[6] H. H. Kim, J. Lee, K. W. Kim, J. Y. Kim, "Proposal for pulse diagnosis positions(chon-kwan-chuk) for pulse analyzer based on literature review and anthropometry," Korean Journal of Oriental Medicine, vol. 28 no. 3, pp. 13-22, 2007.
[7] Y. J. Lee, J. Lee, J. Y. Kim, "Suggestion on an innovative pulse diagnosis system based on technical trend analysis," Korean Journal of Oriental Physiology & Pathology, vol. 23 no. 1, pp. 174-179, 2009.
[8] J. Y. Kim, K. Y. Kim, K. D. Ko, "A study on the problems and the method for improvement of pulse analyzers," The Journal of the Korea Institute of Oriental Medical Diagnostics, vol. 3 no. 1, pp. 28-36, 1999.
[9] H. H. Ryu, S. W. Lee, J. Lee, Y. J. Lee, J. Y. Kim, "Analysis of physical quantification of pulse types by pulse diagnosis literatures," Korean Journal of Oriental Physiology & Pathology, vol. 21 no. 6, pp. 1381-1387, 2007.
[10] Y. J. Jeon, J. U. Kim, H. J. Lee, "A clinical study of the pulse vave characteristics and the three pulse diagnosis positions of Chon, Gwan, and Cheok," Evidence-Based Complementary and Alternative Medicine, vol. 2011,DOI: 10.1093/ecam/nep150, 2011.
[11] C.-M. Huang, C.-C. Wei, Y.-T. Liao, H.-C. Chang, S.-T. Kao, T.-C. Li, "Developing the effective method of spectral harmonic energy ratio to analyze the arterial pulse spectrum," Evidence-Based Complementary and Alternative Medicine, vol. 2011, 2011.
[12] C.-Y. Liu, C.-C. Wei, P.-C. Lo, "Variation analysis of sphygmogram to assess cardiovascular system under meditation," Evidence-Based Complementary and Alternative Medicine, vol. 6 no. 1, pp. 107-112, DOI: 10.1093/ecam/nem065, 2009.
[13] C.-M. Huang, H.-C. Chang, S.-T. Kao, "Radial pressure pulse and heart rate variability in heat- and cold-stressed humans," Evidence-Based Complementary and Alternative Medicine, vol. 2011,DOI: 10.1155/2011/751317, 2011.
[14] L. Xu, D. Zhang, K. Wang, "Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms," IEEE Transactions on Biomedical Engineering, vol. 52 no. 11, pp. 1973-1975, DOI: 10.1109/TBME.2005.856296, 2005.
[15] L. Xu, D. Zhang, K. Wang, L. Wang, "Arrhythmic pulses detection using Lempel-Ziv complexity analysis," EURASIP Journal on Applied Signal Processing, vol. 2006, 2006.
[16] P.-Y. Zhang, H.-Y. Wang, "A framework for automatic time-domain characteristics parameters extraction of human pulse signals," EURASIP Journal on Applied Signal Processing, vol. 2008, 2008.
[17] Y. Chen, L. Zhang, D. Zhang, D. Zhang, "Wrist pulse signal diagnosis using modified Gaussian models and fuzzy C-means classification," Medical Engineering & Physics, vol. 31 no. 10, pp. 1283-1289, DOI: 10.1016/j.medengphy.2009.08.008, 2009.
[18] D.-Y. Zhang, W.-M. Zuo, D. Zhang, H.-Z. Zhang, N.-M. Li, "Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features," Journal of Biomedical Science and Engineering, vol. 3 no. 4, pp. 361-366, 2010.
[19] J.-J. Shu, Y. Sun, "Developing classification indices for Chinese pulse diagnosis," Complementary Therapies in Medicine, vol. 15 no. 3, pp. 190-198, DOI: 10.1016/j.ctim.2006.06.004, 2007.
[20] D. Zhang, W. Zuo, D. Zhang, H. Zhang, N. Li, "Classification of pulse waveforms using edit distance with real penalty," EURASIP Journal on Advances in Signal Processing, vol. 2010, 2010.
[21] J. U. Kim, Y. J. Jeon, Y. J. Lee, K. H. Kim, J. Y. Kim, "Novel diagnostic algorithm for the floating and sunken pulse qualities and its clinical test," Evidence-Based Complementary and Alternative Medicine, vol. 2011, 2011.
[22] S. H. Kim, J. U. Kim, Y. J. Lee, K. H. Kim, J. Y. Kim, "New algorithm of determining the floating and sinking pulse with a pulse diagnosis instrument," Korean Journal of Oriental Physiology & Pathology, vol. 3 no. 6, pp. 1221-1225, 2009.
[23] S. H. Kim, J. U. Kim, Y. J. Jeon, K. H. Kim, J. Y. Kim, "Method for determining the deficient and solid pulse with a new pulse wave parameter," Korean Journal of Oriental Physiology & Pathology, vol. 24 no. 1, pp. 42-47, 2010.
[24] S. S. Franklin, S. A. Khan, N. D. Wong, M. G. Larson, D. Levy, "Is pulse pressure useful in predicting risk for coronary heart disease? The framingham heart study," Circulation, vol. 100 no. 4, pp. 354-360, 1999.
[25] W. W. Nichols, M. F. O'Rourke, McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, 2005.
[26] B. W. Matthews, "Comparison of the predicted and observed secondary structure of T4 phage lysozyme," Biochimica et Biophysica Acta, vol. 405 no. 2, pp. 442-451, 1975.
[27] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, H. Nielsen, "Assessing the accuracy of prediction algorithms for classification: an overview," Bioinformatics, vol. 16 no. 5, pp. 412-424, 2000.
[28] "," .
[29] Y. Lee, J. Lee, H. Lee, J. Kim, "Study for correlation characteristics on radial artery and floating/sinking pulse with BMI," Korean Journal of Oriental Medicine, vol. 14 no. 3, pp. 121-126, 2008.
[30] J. F. Hair, R. E. Anderson, R. L. Tatham, W. C. Black, Multivariate Data Analysis, 1998.
[31] "," , .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2012 Jaeuk U. Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
The deficient and excess pulse qualities (DEPs) are the two representatives of the deficiency and excess syndromes, respectively. Despite its importance in the objectification of pulse diagnosis, a reliable classification model for the DEPs has not been reported to date. In this work, we propose a classification method for the DEPs based on a clinical study. First, through factor analysis and Fisher's discriminant analysis, we show that all the pulse amplitudes obtained at various applied pressures at Chon, Gwan, and Cheok contribute on equal orders of magnitude in the determination of the DEPs. Then, we discuss that the pulse pressure or the average pulse amplitude is appropriate for describing the collective behaviors of the pulse amplitudes and a simple and reliable classification can be constructed from either quantity. Finally, we propose an enhanced classification model that combines the two complementary variables sequentially.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer