Full Text

Turn on search term navigation

© 2014 Himes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone—a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM.

Details

Title
RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells
Author
Himes, Blanca E; Jiang, Xiaofeng; Wagner, Peter; Hu, Ruoxi; Wang, Qiyu; Klanderman, Barbara; Whitaker, Reid M; Duan, Qingling; Lasky-Su, Jessica; Nikolos, Christina; Jester, William; Johnson, Martin; Panettieri, Reynold A, Jr; Tantisira, Kelan G; Weiss, Scott T; Lu, Quan
First page
e99625
Section
Research Article
Publication year
2014
Publication date
Jun 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1978569622
Copyright
© 2014 Himes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.