Full Text

Turn on search term navigation

Copyright Nature Publishing Group Mar 2013

Abstract

Heterozygosity for missense mutations (N88S/S90L) in BSCL2 (Berardinelli-Seip congenital lipodystrophy type 2)/Seipin is associated with a broad spectrum of motoneuron diseases. To understand the underlying mechanisms how the mutations lead to motor neuropathy, we generated transgenic mice with neuron-specific expression of wild-type (tgWT) or N88S/S90L mutant (tgMT) human Seipin. Transgenes led to the broad expression of WT or mutant Seipin in the brain and spinal cord. TgMT, but not tgWT, mice exhibited late-onset altered locomotor activities and gait abnormalities that recapitulate symptoms of seipinopathy patients. We found loss of alpha motor neurons in tgMT spinal cord. Mild endoreticular stress was present in both tgMT and tgWT neurons; however, only tgMT mice exhibited protein aggregates and disrupted Golgi apparatus. Furthermore, autophagosomes were significantly increased, along with elevated light chain 3 (LC3)-II level in tgMT spinal cord, consistent with the activation of autophagy pathway in response to mutant Seipin expression and protein aggregation. These results suggest that induction of autophagy pathway is involved in the cellular response to mutant Seipin in seipinopathy and that motoneuron loss is a key pathogenic process underlying the development of locomotor abnormalities.

Details

Title
Motor neuron degeneration in a mouse model of seipinopathy
Author
Guo, J; Qiu, W; Soh, S L Y; Wei, S; Radda, G K; Ong, W-y; Pang, Z P; Han, W
Pages
e535
Publication year
2013
Publication date
Mar 2013
Publisher
Springer Nature B.V.
e-ISSN
20414889
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1786145711
Copyright
Copyright Nature Publishing Group Mar 2013