It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Most previous research on authorship attribution (AA) assumes that the training and test data are drawn from the same distribution. But in real scenarios, this assumption is too strong. Because of domain mismatches, the AA approaches that perform well on same domain scenarios will degrade performance in cross-domain settings. The goal of this research is to improve the prediction results in cross-domain AA (CDAA), where there is no training data available from the target domain. We propose three different CDAA frameworks to overcome the lack of training samples from the target domain. Our first framework is driven by the hypothesis that a simple model built from all available out-of-domain data effectively discriminates among authors for a new domain. In addition to improving the performance of CDAA, we also study the effectiveness of the three most commonly used feature types in AA. In the second framework, we explore character n-grams by separating them into ten distinct categories based on the linguistic aspect they represent. Finally, the third framework tries to represent each instance with a common feature representation that is meaningful across domains. Based on the findings of our first and second framework, we propose to use and compare two formulations of features for CDAA.
We use prediction accuracy as the performance metric. We compare the performance of proposed frameworks with state-of-the-art approaches, whenever possible. We first demonstrate that addition of training data even if it comes from out-of-topic improves the performance of cross-topic AA. Also we find that character n-grams are the most effective author discriminator for both single as well as cross-domain AA. Once we demonstrate the efficacy of character n-grams in CDAA, we then propose to categorize them to further understand their predictive value. We then demonstrate the discriminative power of each n-gram category, and propose to discard some of the worst performing categories. In the third framework, we demonstrate that structural correspondence learning can induce feature correspondences for AA, and these feature correspondences combine with our character n-gram categorization to yield superior performance on cross-domain AA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer