It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays, the stock market is attracting more and more people's notice with its high challenging risks and high return over. A stock exchange market depicts savings and investments that are advantageous to increase the effectiveness of the national economy. The future stock returns have some predictive relationships with the publicly available information of present and historical stock market indices. ARIMA is a statistical model which is known to be efficient for time series forecasting especially for short-term prediction. In this paper, we propose a model for forecasting the stock market trends based on the technical analysis using historical stock market data and ARIMA model. This model will automate the process of direction of future stock price indices and provides assistance for financial specialists to choose the better timing for purchasing and selling of stocks. The results are shown in terms of visualizations using R programming language. The obtained results revealed that the ARIMA model has a strong potential for short-term prediction of stock market trends.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer