Full Text

Turn on search term navigation

The Author(s) 2014

Abstract

High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C^sub 3^N^sub 4^)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.

Details

Title
Ultrasound exfoliation of inorganic analogues of graphene
Author
Stengl, Václav; Henych, Jirí; Slusná, Michaela; Ecorchard, Petra
Pages
1-14
Publication year
2014
Publication date
Apr 2014
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1652954889
Copyright
The Author(s) 2014