Full Text

Turn on search term navigation

© 2014 Dawson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accessory beta subunit (Cavβ) of calcium channels first appear in the same genome as Cav1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Cavβ subunits (β1, β2, β3, β4) which associate with four Cav1 channel isoforms (Cav1.1 to Cav1.4) and three Cav2 channel isoforms (Cav2.1 to Cav2.3). Here we assess the fundamentally-shared features of the Cavβ subunit in an invertebrate model (pond snail Lymnaea stagnalis) that bears only three homologous genes: (LCav1, LCav2, and LCavβ). Invertebrate Cavβ subunits (in flatworms, snails, squid and honeybees) slow the inactivation kinetics of Cav2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCavβ subunit. LCavβ will also slow the inactivation kinetics of LCav3 T-type channels, but this is likely not physiologically relevant in vivo. Variable N-termini have little influence on the voltage-dependent inactivation kinetics of differing invertebrate Cavβ subunits, but the expression pattern of N-terminal splice isoforms appears to be highly tissue specific. Molluscan LCavβ subunits have an N-terminal “A” isoform (coded by exons: 1a and 1b) that structurally resembles the muscle specific variant of vertebrate β1a subunit, and has a broad mRNA expression profile in brain, heart, muscle and glands. A more variable “B” N-terminus (exon 2) in the exon position of mammalian β3 and has a more brain-centric mRNA expression pattern. Lastly, we suggest that the facilitation of closed-state inactivation (e.g. observed in Cav2.2 and Cavβ3 subunit combinations) is a specialization in vertebrates, because neither snail subunit (LCav2 nor LCavβ) appears to be compatible with this observed property.

Details

Title
Gene Splicing of an Invertebrate Beta Subunit (LCavβ) in the N-Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels
Author
Dawson, Taylor F; Boone, Adrienne N; Senatore, Adriano; Piticaru, Joshua; Thiyagalingam, Shano; Jackson, Daniel; Davison, Angus; Spafford, J David
First page
e92941
Section
Research Article
Publication year
2014
Publication date
Apr 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1511848444
Copyright
© 2014 Dawson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.