Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2013

Abstract

Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.

Details

Title
Chemical and genetic validation of thiamine utilization as an antimalarial drug target
Author
Chan, Xie Wah Audrey; Wrenger, Carsten; Stahl, Katharina; Bergmann, Bärbel; Winterberg, Markus; Müller, Ingrid B; Saliba, Kevin J
Pages
2060
Publication year
2013
Publication date
Jun 2013
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1371817596
Copyright
Copyright Nature Publishing Group Jun 2013