It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Darcy’s law is the basic law of flow, and it produces a partial differential equation is similar to the heat transfer equation when coupled with an equation of continuity that explains the conservation of fluid mass during flow through a porous media. This article, titled the groundwater flow equation, covers the derivation of the groundwater flow equations in both the steady and transient states. We look at some of the most common approaches and methods for developing analytical or numerical solutions. The flaws and limits of these solutions in reproducing the behavior of water flow on the aquifer are also discussed in the article.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer