It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Semiconductor power devices made from silicon carbide (SiC) reached a level of technology enabling their widespread use in power converters. Two different approaches to implementation of modern traction converters in electric multiple units (EMU) have been presented in recent years: (i) 3.3-kV SiC MOSFET-based three-level PWM inverter with regenerative braking and (ii) 6.5-kV IGBT-based fourquadrant power electronic traction transformer (PETT). The former has successfully reached optimized dimensions and efficiency but still requires a bulky line frequency transformer for multisystem applications. The latter characterizes inherent galvanic isolation from AC traction, which is realized by cascaded system of power electronic cells containing medium frequency transformers (MFT). The downsizing of the 6.5-kV IGBT-based cells is, however, problematic. The present paper proposes a different approach, that involves the use of a fast switching 1.2-kV SiC MOSFETS. The SiC-based PETT proposed in the paper is dedicated first for the DC traction. For multi-system application the input voltage of the proposed PETT can be adjusted using weight-optimized adjusting autotransformer. Thanks to utilization of fast-switching SiCbased power modules the weight and size of the power electronic cells can be optimized in a convenient way.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer