Abstract

One of the most commonly used materials in the field of construction is concrete. Nevertheless, there are strong inclinations for concrete to form cracks, which would then allow the penetration of both aggressive and harmful substances into the concrete. Subsequently, this will decrease the durability of the affected structures. Thus, the ability for cracks to heal themselves in the affected cementitious materials is in demand to prolong the life of any structure. Autogenous self-healing is one approach to overcome smaller crack widths (macrocracks). Nowadays, crack width-healing is of great importance. Having said that, both polymers and bacteria are the most common approach to enhance autogenous self-healing and bond crack faces. Crack width-healing of up to 0.97 mm was achieved via bacteria-based self-healing. In this paper, the mechanisms of these approaches and their efficiency to heal crack were highlighted. Both bacteria-and polymers-based self-healing are promising techniques for the future. However, long term studies are still required before real applications can be made.

Details

Title
Crack-healing in cementitious material to improve the durability of structures: Review
Author
Hassan Amer Ali Algaifi; Suhaimi Abu Bakar; Abdul Rahman Mohd Sam; Ahmad Razin Zainal Abidin
Section
Structural Engineering
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2487743232
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.