Full Text

Turn on search term navigation

Copyright Chilean Journal of Agricultural Research Apr-Jun 2012

Abstract

The essential oil of citrus fruit contains components pleasant sensory characteristics that are appreciated in food, pharmaceutical, and cosmetics industries. In the case of sweet lime (Citrus limetta Risso), is necessary to characterize the essential oil components, to identify potential uses of this fruit. The essential oil of sweet lime was obtained from lime flavedo in four different maturation stages. Steam distillation was employed and then compared with hexane extraction. The identification of the components in the essential oil was carried out by gas chromatography and mass spectrometry. A total of 46 components were found in the essence of lime, among which the highest concentration of compounds present were aldehydes such as limonene. Linalool, sabinene, and bergamol were more abundant than in other varieties. The best extraction method was steam distillation, and the concentrations in stage III from the main terpenic portion were d-limonene with 74.4%, bergamol with 8.23%, and β-pinene with 7.62%.

Caracterización de compuestos volátiles en aceite esencial de lima dulce (Citrus limetta Risso). El aceite esencial de frutos cítricos contiene componentes de características sensoriales agradables que son apreciadas en las industrias alimentaria, farmacéutica y de cosméticos. En el caso de la lima dulce (Citrus limetta Risso), es necesaria la caracterización de los componentes de su aceite esencial para identificar usos potenciales de este fruto. El aceite esencial de lima dulce se obtuvo a partir del flavedo de lima en cuatro etapas de maduración diferentes. Se utilizó destilación por arrastre de vapor y se comparó con la extracción con hexano. La identificación de los componentes en el aceite esencial se realizó por cromatografía de gases y espectrometría de masas. Se encontró un total de 46 componentes en el aceite esencial de lima, entre los cuales la mayor concentración de compuestos presentes son aldehídos como el limoneno. Linalol, sabineno y bergamol fueron más abundantes que en otras variedades. El mejor método de extracción fue la destilación al vapor, y las concentraciones en la etapa III de la parte terpénica principal fueron d-limoneno 74.4%, bergamol 8.23%, y β-pineno 7.62%.

In the analysis and comparison of the essential oils of lemon (Citrus aurantifolia Swingle), bergamot (Citrus bergamia Risso), mandarin (Citrus deliciosa Tenore), sweet orange (Citrus sinensis L. Osbeck) and bitter orange (Citrus aurantium L), it was found that most of the compounds in these citric essential oils are terpenes, such as α-thujene, α-pinene, camphene, sabinene, β-pinene, myrcene, α-terpinene, p-cymene, linalool, and d-limonene; this last terpene was the most abundant compound in the four citric fruits, with a concentration of 90% in sweet orange and bitter orange. Likewise, each citrus fruit has particular components present in minor quantities; these components differ between fruits and can be used in identifying the various oils and controlling their quality and authenticity ([Mondello] et al., 2003). The sweet lime, according to W.T. Swingle classification (Nicolosi, 2007), belongs to Citrus gender, limetta species, Risso variety, Auranciaceas subfamily and Rutaceae family. In Mexico, the sweet lime does not have as much importance as the amount attached to the diverse lemon varieties, and it still lacks commercial value, although it is produced in 14 states of the Mexican Republic. Additionally, this crop has begun to disappear from the state of Guanajuato, due to a lack of marketing and incorporation into products that can be made easily available on the market.

The compounds found in C. limetta are compared with the compounds reported in other varieties (Table 4) (Shaw et al., 2000; [Steuer] et al., 2001; [Yadav] et al., 2004; Mahmud et al., 2009; Bousbia et al., 2009). The d-limonene, β-pinene, β-myrcene, α-pinene, β-bisabolol and α-terpineol levels are in the range reported by the majority of authors. The linalool, sabinene, and bergamol show similar concentration levels with those found for other reported varieties. Sabinene has antimicrobial and antioxidant properties; its concentration in lemon is 1-2%, similar to the amount found in this work. Previous research described, a practical and convenient synthesis starting from linalool via bergamol or linalyl acetate (Berger, 2007). Geraniol, a compound related to the fruit's aroma, with a citrus-like and menthollike odor, possesses anticancer activity and can reduce the growth of colon cancer cells by up to 70% (Berger, 2007). Rammanee and Hongpattarakere (2011) report that essential oils from tropical citrus epicarps have inhibitory activities against Aspergillus fungi. In sweet lime, geraniol increased with maturity but was not found in stage I; however, it is found in greater quantity than in other varieties. The alcohol β-bisabolol was found in lime for the first time in the year 2004 (Yadav et al., 2004); in this study, it was found with a concentration that was 50% higher. There were no reported values for the content of nonanal and undecanal; these aliphatic aldehydes are related to the quality of citrus (Stuart et al., 2001) and have aromatic properties, first described as having citrus-like and soapy notes (Berger, 2007). Other compounds, such as aromadendrene and camphene, are not reported; camphene has a role in the digestion of fat through increasing bile secretion (Berger, 2007). Compounds with values of under 0.03% cannot be compared; camphor and α-farnesene show area percents of 0.001%, and this result indicates that the sensitivity of the column and the chromatographic method are important in the separation and identification of compounds.

Details

Title
CHARACTERIZATION OF VOLATILE COMPOUNDS IN THE ESSENTIAL OIL OF SWEET LIME (Citrus limetta Risso)
Author
Colecio-Juárez, María C; Rubio-Núñez, Rubria E; Botello-Álvarez, José E; Martínez-González, Gloria M; Navarrete-Bolaños, José L; Jiménez-Islas, Hugo
Pages
275-280
Section
SCIENTIFIC NOTE
Publication year
2012
Publication date
Apr-Jun 2012
Publisher
Chilean Journal of Agricultural Research
ISSN
07185820
e-ISSN
07185839
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1291056837
Copyright
Copyright Chilean Journal of Agricultural Research Apr-Jun 2012